Indian Statistical Institute, Bangalore Centre

B.Math (Hons) II Year, Second Semester Semestral Examination Optimization

May 04, 2012

Time: 3 Hours

Instructor: Pl.Muthuramalingam Maximum mark you can get is:50

You can get a maximum marks of 26 in part A

Part A

- 1. Let **x** be as in the primal part and **y** be as in the dual part of the conversion table given in the last page. Verify that $\sum_{i,j} y_i a_{ij} x_j \ge \sum_i y_i b_i$. [3]
- 2. Let $A : \mathbb{R}_{col}^n \to \mathbb{R}_{col}^{m_o}$, be any linear onto map where $m_0 < n$. Let $\mathbf{a}^1, \mathbf{a}^2, \cdots, \mathbf{a}^n$ be the columns of A so that $A = [\mathbf{a}^1, \mathbf{a}^2, \cdots, \mathbf{a}^n]$. Let $B = [\mathbf{a}^1, \mathbf{a}^2, \cdots, \mathbf{a}^{m_0}]$ be an invertible matrix. Fix j with $m_0+1 \leq j \leq n$. Let $\mathbf{a}^j = B\mathbf{r}^j$ for a unique \mathbf{r}^j in $\mathbb{R}_{col}^{m_0}$. Let $\mathbf{r}^j = (r_1^j, r_2^j, \cdots, r_{m_0}^j)^t$. Assume that $r_i^j \leq 0$ for each i. Let $\mathbf{c} \in \mathbb{R}_{col}^n, \mathbf{c}^t = (c_1, c_2, \cdots, c_n)$. Further, let $c_j < \sum_{q=1}^m c_q r_q^j$. Let \mathbf{x} be any B basic feasible solution, for the equation $A \mathbf{w} = \mathbf{b}$, with \mathbf{b} a given fixed vector. Then show that $\inf\{\mathbf{c}^t \mathbf{v} : A \mathbf{v} = \mathbf{b}, \mathbf{v} \geq 0\} = -\infty$.

[Hint: Choosing **k** suitably and considering the family { $\mathbf{x} + \theta \mathbf{k} : \theta$ real } may help. **k** may have entries -1, 0, and entries of \mathbf{r}^{j}]. [4]

- 3. a) <u>Notation</u>: For any matrix $A : R_{col}^n \to R_{col}^{m_0}$ define $v_1(A), v_2(A)$ by $v_1(A) = \max \{ \min_i \sum a_{ij} x_j : x_j \ge 0, x_1 + x_2 + \dots + x_n = 1 \}$ and $v_2(A) = \min \{ \max_j \sum_i y_i a_{ij} : y_i \ge 0, y_1 + y_2 + \dots + y_{m_0} = 1 \}$. If $m_0 = n$ and $A^t = -A$ show that $v_1(A) = 0 = v_2(A)$. [3] b) For $A : R_{col}^n \to R_{col}^{m_0}$, define $B : R_{col}^n \to R_{col}^{m_0}$ by $b_{ij} = a_{ij} + k$ where k
 - b) For $A : R_{col}^n \to R_{col}^n$, define $B : R_{col}^n \to R_{col}^n$ by $b_{ij} = a_{ij} + k$ where k is a fixed real constant. Find a relation between $v_1(B)$ and $v_1(A)$ and prove your claim. [1]
- 4. Let $g, f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be \mathbb{C}^2 functions. Let $S = \{\mathbf{x}\in\mathbb{R}^2 : g(\mathbf{x}) = c\}$ where c is a given constant. Define $L : \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R}$ by $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$. Assume that $\mathbf{x}\in S$ is a local minima for f/S. Further assume that rank lin-span $\{\nabla g(\mathbf{x})\} = 1$ for all \mathbf{y} with $\| \mathbf{y} - \mathbf{x} \| < \varepsilon_0$ for some $\varepsilon_0 > 0$. Then we know there exists λ such that $[\nabla f + \lambda \nabla g](\mathbf{x}) = 0$. Show that for the same λ , the following second derivative condition is

satisfied. Let $\sum(\mathbf{x}) = \{\mathbf{z} \in R_{col}^2 : g'(\mathbf{x})\mathbf{z} = 0\}$. Then $\mathbf{z}^t L''(\mathbf{x}^*, \lambda)\mathbf{z} \ge 0$ for all \mathbf{z} in $\sum(\mathbf{x}^*)$. Here $L''(\mathbf{x}^*, \lambda) = ((\frac{\partial^2 L}{\partial x_i \ \partial x_j} : (\mathbf{x}^*, \lambda)))$. [7]

5. Let $g_1, g_2, \dots, g_r : \mathbb{R}^n \longrightarrow \mathbb{R}$ for r < n, be C^1 functions. Let c_1, c_2, \dots, c_r be constants, $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n-r} \times \mathbb{R}^r$. Assume that $g_i(\mathbf{a}, \mathbf{b}) = c_i$ for each *i*. Let $\mathbf{a} \in U$, U open set in \mathbb{R}^{n-r} . Assume that $h_j : U \to \mathbb{R}$ for $j = n - r + 1, n - r + 2, \dots, n$ satisfy $(h_{n-r+1}(\mathbf{a}), \dots, h_n(\mathbf{a})) = \mathbf{b}$ and $g_i(\mathbf{z}, h_{n-r+1}(\mathbf{z}), \dots, h_n(\mathbf{z})) = c_i$. for \mathbf{z} in U. Then show that, with $\partial_i = \frac{\partial}{\partial x_i}$,

$$\begin{pmatrix} \partial_{1}g_{1} & \partial_{2}g_{2} & \cdots & \partial_{n}g_{1} \\ \partial_{1}g_{2} & \partial_{2}g_{2} & \cdots & \partial_{n}g_{2} \\ \partial_{1}g_{r} & \partial_{2}g_{r} & \cdots & \partial_{n}g_{r} \end{pmatrix} (\mathbf{a}, \mathbf{b}) \begin{pmatrix} 1 \cdot & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 \cdot & \vdots \\ \partial_{1}h_{n-r+1} & \partial_{2}h_{n-r+1} & \cdots & \partial_{n-r}h_{n-r+1} \\ \partial_{1}h_{n-r+2} & \partial_{2}h_{n-r+2} & \cdots & \partial_{n-r}h_{n-r+2} \\ \vdots & \vdots & \vdots & \vdots \\ \partial_{1}h_{n} & \partial_{2}h_{n} & \cdots & \partial_{n-r}h_{n} \end{pmatrix}$$
[2]

- 6. Let $f, g: R \to R$ be C^1 functions, $D = \{x: g(x) \ge 0\}$, and $g(x_0) = 0$. If x_0 is local maxima for $f \mid_D, g'(x_0) < 0$ and $f'(x_0) \ne 0$, then show that $f'(x_0) > 0$. [2]
- 7. Let $f: D \longrightarrow R$ be a concave function on a convex set D of \mathbb{R}^n . If \mathbf{x}^0 is an intrior point of D and is a local maxima for f, then show that $f(\mathbf{x}^0) = \max_{D} f$. [3]
- 8. Let $g_1, g_2, \dots, g_r, f : \mathbb{R}^n \to \mathbb{R}$ be concave C^1 functions. Let $D = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0 \text{ for each } j\}$ be nonempty. Let $M_j \ge 0$. Let $\mathbf{x}^* \varepsilon D$.
 - a) Show that D is a convex set. [1]
 - b) Show that $f + \sum M_j g_j$ is a concave function. [1]

c) Let
$$\sum M_j g_j[\mathbf{x}^*] = 0$$
 and $[\bigtriangledown f + \sum M_j \bigtriangledown g_j](\mathbf{x}^*) = 0$. Then show that $f(\mathbf{x}^*) = \max_D f$. [4]

Part B

9. Determine the maximum value of $18x_1+4x_2+6x_3$ under the constraints $3x_1+x_2 \leq -3$ $2x_1+x_3 < -5$ $x_1 \le 0, x_2 \le 0, x_3 \le 0$ by looking at the dual problem or directly. [4]

10. A factory or firm produces two outputs y and z using a single input x. The set of attainable output levels H(x) form an input use of x is given by $H(x) = \{(y, z) : y^2 + z^2 \leq x\}$. The firm has available to it a maximum of one unit of input x. Let p_1, p_2 denote the price of y, z respectively. Determine the firms optimal output mix, using Kuha-Tucker theorem. Also find the maximum selling price.

[Hint: Let $f, g_1, g_2, g_3, g_4, g_5 : \mathbb{R}^3 \to \mathbb{R}$ be given by

 $f(x, y, z) = p_1 y + p_2 z,$ $g_1(x, y, z) = x - (y^2 + z^2),$ $g_2(x, y, z) = x,$ $g_3(x, y, z) = 1 - x,$ $g_4(x, y, z) = y,$ $g_5(x, y, z) = z,$

 $S = \{(x, y, z) : g_i(x, y, z) \ge 0 \text{ for each } i\}. \text{ If } (x^*, y^*, z^*) \text{ is local maxima for } f \text{ on } S, \text{ you can assume for (obvious?) reasons } g_2(x^*, y^*, z^*) > 0, g_4(x^*, y^*, z^*) > 0 \text{ and } g_5(x^*, y^*, z^*) > 0.$ [10]

11. a) Let
$$A = \begin{bmatrix} 5 & 0 \\ 2 & 3 \end{bmatrix}$$
. Calculate $v_1(A)$. [3]

b) Let
$$B = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$
. Calculate $v_2(B)$. [1]

[Hint you may use a portion of question 3 of part A]

- 12. Let $g, f: R \longrightarrow R$ be given by $f(x) = x^n \quad n \in \{2, 3, 4, \dots\},$ g(x) = x.Let $D = \{g \ge 0\}$ and $x^* = 0, \lambda = 0.$ a) Show that x^* is not a local maxima for f on Db) $x^* \in D, g(x^*) = 0$, rank lin span $\{ \bigtriangledown g(x^*) \} = 1, \lambda \ge 0, \lambda g(x^*) = 0.$ c) $(\bigtriangledown f + \lambda \bigtriangledown g)(x^*) = 0.$ [3]
- 13. Let $f: (0,\infty) \times (0,\infty) \to R$ be given by $f(x,y) = x^a y^b, a > 0, b > 0$. If $a + b \le 1$, then f is concave function. [3]

Full Conversion Table

$$\begin{array}{cccc} \text{Primal} & \text{Dual} \\ A, \mathbf{x}, \mathbf{b}, \mathbf{c} & A^t, \mathbf{y}^t, \mathbf{c}^t, \mathbf{b}^t \\ i \varepsilon I_1, & \sum_j a_{ij} x_j = b_i & y_i real, y_i \gtrless 0 \\ i \varepsilon I_2, & \sum_j a_{ij} x_j \ge b_i & y_i \ge 0 \\ i \varepsilon I_3, & \sum_j a_{ij} x_j \le b_i & y_i \le 0 \\ j \varepsilon J_1, & x_j real, x_j \gtrless 0 & \sum_i y_i a_{ij} = c_j \\ j \varepsilon J_2, & x_j \ge 0 & \sum_i y_i a_{ij} \le c_j \\ j \varepsilon J_3, & x_j \le 0 & \sum_i y_i a_{ij} \ge c_j \\ min \sum_j c_j x_j & max \sum_i y_i b_i \end{array}$$